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Dans le cas d’une réponse par OUI ou par NON, on demande d’entourer la bonne réponse
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Exercice 1 (Formes quadratiques, réduction de Gauss)
(a) (1 pt) Soit 𝑞(𝑎) : R2 → R la forme quadratique définie par 𝑞(𝑎)(𝑥, 𝑦) = 4𝑥𝑦.

Décomposer 𝑞(𝑎) en combinaison linéaire de carrés de formes linéaires linéairement
indépendantes.
𝑞(𝑎) = (𝑥 + 𝑦)2 − (𝑥 − 𝑦)2

(b) (1 pt) Soit 𝑞(𝑏) : R2 → R la forme quadratique définie par 𝑞(𝑏)(𝑥, 𝑦) = 𝑥2−2𝑥𝑦+3𝑦2.
Décomposer 𝑞(𝑏) en combinaison linéaire de carrés de formes linéaires linéairement
indépendantes.
𝑞(𝑏) = (𝑥 − 𝑦)2 + 2𝑦2

(c) (1
2 pt) La forme bilinéaire symétrique associée à 𝑞(𝑎) est un produit scalaire.

NON
(d) (1

2 pt) La forme bilinéaire symétrique associée à 𝑞(𝑏) est un produit scalaire.
OUI

Exercice 2 (Forme bilinéaire, projections)
(a) (1 pt) On considère la projection orthogonale 𝑝 : R3 → R3 sur la droite engendrée

par le vecteur

⎛⎝1
0
0

⎞⎠. Donner la matrice 𝐴 de 𝑝 dans la base standard.

𝐴 =

⎛⎝ 1 0 0
0 0 0
0 0 0

⎞⎠



(b) (1 pt) Etant donnée la projection orthogonale 𝑝 de (a), on considère la forme
bilinéaire 𝜑 : R3 × R3 → R3 donnée par 𝜑(𝑢, 𝑣) = ⟨𝑝(𝑢), 𝑝(𝑣)⟩ où ⟨·, ·⟩ désigne le
produit scalaire habituel sur R3. Déterminer le rang de 𝜑.

rang(𝜑) = 1

(c) (0,5 pt) Parmi tous les vecteurs 𝑥⃗ de Vect(

⎛⎝1
0
0

⎞⎠), trouver celui qui minimise la

quantité ‖

⎛⎝ 5
2

−1

⎞⎠ − 𝑥⃗‖. Réponse : 𝑥⃗ =

⎛⎝5
0
0

⎞⎠
(d) (0,5 pt) Toute famille orthonormée de R3 est libre. OUI

Exercice 3 (Gram-Schmidt, projection) On se place dans l’espace euclidien R3

muni du produit scalaire usuel. Soit 𝐹 le sous-espace vectoriel de R3 engendré par les

vecteurs 𝑓1 =

⎛⎝0
1
1

⎞⎠ et 𝑓2 =

⎛⎝1
2
0

⎞⎠.

(a) (2 pts) Appliquer le procédé de Gram-Schmidt à la base (𝑓1, 𝑓2) pour trouver une
base (⃗𝜖1, 𝜖⃗2) orthonormée de 𝐹 :

𝜖⃗1 = 1√
2

⎛⎝0
1
1

⎞⎠ 𝜖⃗2 = 1√
3

⎛⎝ 1
1

−1

⎞⎠
(b) (1 pt) Soit 𝑢⃗ ∈ R3. Indiquer une formule permettant de déterminer le projeté

orthogonal 𝜋𝐹 (𝑢⃗) de 𝑢⃗ sur 𝐹 .

𝜋𝐹 (𝑢⃗) = ⟨𝑢⃗, 𝑒⃗1⟩𝑒⃗1 + ⟨𝑢⃗, 𝑒⃗2⟩𝑒⃗2

Exercice 4 (Orthogonalité dans un espace de polynômes) On se place dans
l’espace 𝐸 = R1[𝑋] formé des polynômes de degré 6 1 et muni du produit scalaire :

⟨𝑃, 𝑄⟩ =
∫︁ 1

0
𝑃 (𝑥)𝑄(𝑥) 𝑑𝑥

(a) (1 pt) Soit 1 la fonction constante qui prend la valeur 1 partout. Calculer ‖1‖ où
‖.‖ désigne la norme induite par le produit scalaire ⟨·, ·⟩.

‖1‖ = 1

(b) (1pt) Déterminer un polynôme de la forme 2𝑋 + 𝑎 (avec 𝑎 ∈ R) orthogonal à 1.

𝑎 = −1

(c) (1pt) Déterminer une base orthonormée de R1[𝑋].

1 et
√

3(2𝑥 − 1)


