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Questions de cours
i) Soit 𝑁 ∈ N*. On se donne 𝑇 ∈ ℰ ′(R𝑁) et 𝑆 ∈ 𝒟′(R𝑁). Définir le produit de
convolution 𝑇 * 𝑆 en utilisant le produit tensoriel.

⟨𝑇 * 𝑆, 𝜙⟩ = ⟨𝑇 ⊗ 𝑆, 𝜙(𝑥+ 𝑦)⟩ , ∀𝜙 ∈ 𝒟(R𝑁) .

ii) Rappeler la définition de la transformation de Fourier ℱ(𝑇 )(𝜉) d’une distribution
à support compact 𝑇 ∈ ℰ ′(R𝑁), ainsi que ses propriétés.

ℱ(𝑇 )(𝜉) = ⟨𝑇, 𝑒−𝑖 𝑥·𝜉⟩

qui est une fonction 𝐶∞ à croissance lente (ainsi que ses dérivées).

iii) Que dit la formule de Plancherel dans 𝒮(R𝑁) ?∫︁
R𝑁
𝜑(𝑥) 𝜓(𝑥)𝑑𝑥 = 1

(2𝜋)𝑁

∫︁
R𝑁

(ℱ𝜑)(𝜉) ℱ𝜓(𝜉) 𝑑𝜉 .

Exercice I. On travaille sur 𝒟′(R). Soit 𝜆 un nombre complexe de partie réelle
strictement négative. On pose 𝐻𝜆(𝑥) := 𝑒𝜆 𝑥 𝐻(𝑥) où 𝐻 est la fonction de Heaviside
(qui vaut 1 si 𝑥 ≥ 0 et 0 sinon).
I.1) Expliquer pourquoi le produit de convolution 𝐻𝜆 *𝐻𝜆 est bien défini.

Pour 𝜆 = −𝜀+ 𝑖 𝜇 avec 𝜀 ∈ R*
+, on a

|𝐻𝜆(𝑥)| ≤ 𝑒−𝜀 𝑥 𝐻(𝑥) ∈ 𝐿1(R) .

On a donc 𝐻𝜆*𝐻𝜆 ∈ 𝐿1(R) avec d’après l’inégalité de Young une norme 𝐿1 controlée
par le produit des normes 𝐿1.
I.2) On note 𝐻*𝑛

𝜆 la convolée 𝑛 fois de 𝐻𝜆 (c’est-à-dire 𝐻𝜆 *𝐻𝜆 * · · · *𝐻𝜆 répété 𝑛
fois). Prouver par récurrence que 𝐻*𝑛

𝜆 (𝑥) = 𝑥𝑛−1 𝐻𝜆(𝑥)/(𝑛− 1)! pour tout 𝑛 ∈ N*.
Pour 𝑛 = 1, c’est la définition de 𝐻𝜆. On suppose la propriété vraie au can 𝑛.

On écrit alors

𝐻
*(𝑛+1)
𝜆 (𝑥) = (𝐻*𝑛

𝜆 *𝐻𝜆)((𝑥) =
(︁
𝑥𝑛−1 𝐻𝜆(𝑥)/(𝑛− 1)!

)︁
*𝐻𝜆 ,



puis on calcule

𝐻*𝑛
𝜆 (𝑥) =

⎧⎪⎨⎪⎩
0 si 𝑥 ≤ 0 ,

1
(𝑛− 1)! 𝑒

𝜆 𝑥
∫︁ 𝑥

0
𝑦𝑛−1 𝑑𝑦 = 1

𝑛! 𝑒
𝜆 𝑥 𝑥𝑛 si 0 ≤ 𝑥 .

D’où le résultat au cran 𝑛+ 1, et ainsi de suite.
I.3) Montrer que si 𝑇 ∈ ℰ ′(R) et 𝑆 ∈ 𝒟′(R), on a 𝑒𝜆 𝑥 (𝑇 * 𝑆) = (𝑒𝜆 𝑥 𝑇 ) * (𝑒𝜆 𝑥 𝑆).

C’est visible par exemple en utilisant le produit tensoriel

⟨𝑒𝜆 𝑥 (𝑇 * 𝑆), 𝜙⟩ = ⟨𝑇 * 𝑆, 𝑒𝜆 𝑥 𝜙⟩ = ⟨𝑇 ⊗ 𝑆, 𝑒𝜆 (𝑥+𝑦) 𝜙(𝑥+ 𝑦)⟩
= ⟨(𝑒𝜆 𝑥 𝑇 ) ⊗ (𝑒𝜆 𝑦 𝑆), 𝜙(𝑥+ 𝑦)⟩ = ⟨(𝑒𝜆 𝑥 𝑇 ) * (𝑒𝜆 𝑥 𝑆), 𝜙⟩ .

I.4) Montrer que si 𝑇 ∈ ℰ ′(R) alors 𝐻 * 𝑇 est une primitive de 𝑇 .

(𝐻 * 𝑇 )′ = 𝐻 ′ * 𝑇 = 𝛿0 * 𝑇 = 𝑇 .

I.5) On prend 𝜆 = −𝜀 avec 𝜀 ∈ R*
+ destiné à tendre vers 0. Calculer ℱ(𝐻−𝜀)(𝜉).

ℱ(𝐻−𝜀)(𝜉) =
[︂
−𝑒−(𝜀+𝑖 𝜉) 𝑥

𝑖 𝜉 + 𝜀

]︂+∞

0
= 1
𝑖 𝜉 + 𝜀

.

I.6) Etablir l’identité (*) ci-dessous, puis en déduire que vp(1/𝑥) ∈ 𝒮 ′(R).

(*) ⟨vp(1/𝑥), 𝜙⟩ =
∫︁ 1

−1

𝜙(𝑥) − 𝜙(0)
𝑥

𝑑𝑥+
∫︁

|𝑥|≥1

𝜙(𝑥)
𝑥

𝑑𝑥 .

Par définition
⟨vp(1/𝑥), 𝜙⟩ = lim

𝜀→0+

∫︁
|𝑥|≥𝜀

𝜙(𝑥)
𝑥

𝑑𝑥 .

Par conséquent

⟨vp(1/𝑥), 𝜙⟩ = lim
𝜀→0+

(︂∫︁
1≥|𝑥|≥𝜀

𝜙(0)
𝑥

𝑑𝑥+
∫︁

1≥|𝑥|≥𝜀

𝜙(𝑥) − 𝜙(0)
𝑥

𝑑𝑥
)︂

+
∫︁

|𝑥|≥1

𝜙(𝑥)
𝑥

𝑑𝑥 .

Le premier terme disparaît (par imparité) tandis que le second terme converge par
le théorème de convergence dominée applicable car 𝜙(𝑥) − 𝜙(0) = 𝑂(|𝑥|). De (*),
on peut déduire

|⟨vp(1/𝑥), 𝜙⟩| ≤ 2 ‖ 𝜙′ ‖∞ +
(︂∫︁ +∞

1

𝑑𝑥

𝑥2

)︁
‖ 𝑥𝜙 ‖∞≲ 𝒩1(𝜙) ,

ce qui montre l’appartenance à 𝒮 ′(R).



I.7) En exploitant (*), établir que ℱ(𝐻−𝜀)(𝜉) converge au sens des distributions
lorsque 𝜀 → 0+ vers la distribution 𝜋 𝛿0 − 𝑖 vp(1/𝜉).

Par construction∫︁
R

ℱ(𝐻−𝜀)(𝜉) 𝜙(𝜉) 𝑑𝜉 = −𝑖
∫︁

R

𝜙(𝜉)
𝜉 − 𝑖 𝜀

𝑑𝜉 .

On s’inspire de (*) pour effectuer la décomposition∫︁
R

𝜙(𝜉)
𝜉 − 𝑖 𝜀

𝑑𝜉 =
∫︁ 1

−1

𝜙(𝜉) − 𝜙(0)
𝜉 − 𝑖 𝜀

𝑑𝜉 +
∫︁ 1

−1

𝜙(0)
𝜉 − 𝑖 𝜀

𝑑𝜉 +
∫︁

|𝜉|≥1

𝜙(𝜉)
𝜉 − 𝑖 𝜀

𝑑𝜉

On peut facilement passer à la limite (par convergence dominée) dans le premier et
le dernier terme de droite. On calcule le second∫︁ 1

−1

1
𝜉 − 𝑖 𝜀

𝑑𝜉 =
∫︁ 1

−1

𝜉 + 𝑖 𝜀

𝜉2 + 𝜀2 𝑑𝜉 =
∫︁ 1

−1

𝑖

𝜀

1
1 + (𝜉/𝜀)2 𝑑𝜉 = 𝑖

[︁
arctan(𝜉/𝜀)

]︁1

−1
.

Et donc

lim
𝜀→0+

∫︁
R

𝜙(𝜉)
𝜉 − 𝑖 𝜀

𝑑𝜉 =
∫︁ 1

−1

𝜙(𝜉) − 𝜙(0)
𝜉

𝑑𝜉 + 𝑖 𝜋 𝜙(0) +
∫︁

|𝜉|≥1

𝜙(𝜉)
𝜉

𝑑𝜉 .

Il suffit alors d’exploiter (*) pour reconnaitre le résultat escompté.
I.8) Identifier la distribution ℱ(𝐻). Justifier la réponse.

Soit 𝜙 ∈ 𝒮(R) une fonction test. Comme 𝜙 ∈ 𝐿1(R), par convergence dominée,
on a

lim
𝜀→0+

⟨𝐻−𝜀, 𝜙⟩ = lim
𝜀→0+

∫︁ +∞

0
𝑒−𝜀 𝑥 𝜙(𝑥) 𝑑𝑥 =

∫︁
R
𝐻(𝑥) 𝜙(𝑥) 𝑑𝑥 .

Cela signifie que la famille 𝐻−𝜀 converge vers 𝐻 au sens de 𝒮 ′(R). Et comme la
tranformation de Fourier ℱest continue sur 𝒮 ′(R), la famille ℱ(𝐻−𝜀) converge vers
ℱ(𝐻) dans 𝒮 ′(R). Avec 1.7) on récupère ainsi

ℱ(𝐻) = 𝜋 𝛿0 − 𝑖 vp(1/𝜉) .

I.9) Expliquer pourquoi ℱ(𝐻 *𝐻) est bien définie en tant que distribution tempérée.
En passant à la limite (pour 𝜆 = −𝜀 avec 𝜀 → 0+) dans 𝐻𝜆 *𝐻𝜆 = 𝑥𝐻𝜆, on

obtient 𝐻 *𝐻 = 𝑥𝐻 (ce qui se vérifie aussi par un calcul direct). Comme

|⟨𝑥𝐻,𝜙⟩| ≤
∫︁ +∞

0

𝑥

(1 + 𝑥2)2 (1 + 𝑥2)2 |𝜙(𝑥)| 𝑑𝑥 ≲ 𝒩4(𝜙) ,

on peut affirmer que 𝐻 * 𝐻 ∈ 𝒮 ′(R). Comme la transformation de Fourier agit
continûment sur 𝒮 ′(R), on récupère ainsi ℱ(𝐻 *𝐻) ∈ 𝒮 ′(R).



I.10) Calculer ℱ(𝐻 *𝐻) en fonction des dérivées de ℱ(𝐻). Peut-on affirmer que la
formule ℱ(𝐻 *𝐻) = ℱ(𝐻) ℱ(𝐻) est vérifiée au sens des distributions ?

ℱ(𝐻 *𝐻) = ℱ(𝑥𝐻) = 𝑖 𝜕𝜉ℱ(𝐻) .
Comme 𝐻 n’est pas à support compact, on sort du cadre d’application de cette
formule. D’ailleurs le produit ℱ(𝐻) ℱ(𝐻) n’a pas de sens.

I.11) Trouver une solution élémentaire de l’opérateur différentiel 𝑑/𝑑𝑥− 𝜆, c’est-à-
dire une solution 𝐸 ∈ 𝒟′(R) de 𝐸 ′ − 𝜆𝐸 = 𝛿0.

On vérifie que 𝐸 = 𝐻𝜆 convient.

Exercice II. On rappelle que pour 𝑓 ∈ 𝐿1(R2), on définit la transformée de
Fourier de 𝑓 par

(ℱ𝑓)(𝜉) = 1
2 𝜋

∫︁
R2
𝑒−𝑖𝑥·𝜉 𝑓(𝑥) 𝑑𝑥 , ∀𝜉 ∈ R2 .

II.1) Soit 𝑓 une fonction intégrable sur R2. Montrer que l’application

𝑇𝑓 : 𝒮(R2) −→ C

𝜙 ↦−→
∫︁

R2
𝑓(𝑥) 𝜙(𝑥) 𝑑𝑥 .

est une distribution tempérée sur R2.
Pour 𝐶 =‖ 𝑓 ‖𝐿1, on a

|𝑇𝑓 (𝜙)| ≤ 𝐶 𝒩0(𝜙) , 𝒩0(𝜙) =‖ 𝜙 ‖𝐿∞ .

II.2) Soit 𝑢 ∈ 𝒮 ′(R2). Exprimer la transformée de Fourier de

𝜕4𝑢

𝜕𝑥4
1

+ 𝜕8𝑢

𝜕𝑥8
2

+ 𝑢

en fonction de celle de 𝑢.

ℱ
(︂
𝜕4𝑢

𝜕𝑥4
1

+ 𝜕8𝑢

𝜕𝑥8
2

+ 𝑢
)︂

(𝜉) = (𝜉4
1 + 𝜉8

2 + 1) ℱ𝑢(𝜉)

II.3) Soit 𝑓 ∈ 𝒮 ′(R2). Montrer que l’équation

(⋆) 𝜕4𝑢

𝜕𝑥4
1

+ 𝜕8𝑢

𝜕𝑥8
2

+ 𝑢 = 𝑓



admet une unique solution 𝑢 ∈ 𝒮 ′(R2).

𝑢(𝑥) = ℱ−1
(︂ ℱ𝑓(𝜉)
𝜉4

1 + 𝜉8
2 + 1

)︂

II.4) Montrer que si 𝑓 est une fonction intégrable sur R2 alors la solution de (⋆) est
une fonction de classe 𝐶1 sur R2.

𝜕𝑗𝑢(𝑥) = ℱ−1
(︂
𝑖 𝜉𝑗 ℱ𝑓(𝜉)
𝜉4

1 + 𝜉8
2 + 1

)︂

Comme ⃒⃒⃒⃒
⃒ 𝑖 𝜉𝑗 ℱ𝑓(𝜉)
𝜉4

1 + 𝜉8
2 + 1

⃒⃒⃒⃒
⃒ ≤ 𝐶 ‖ 𝑓 ‖𝐿1

(𝜉2
1 + 𝜉2

2 + 1)3/2 ∈ 𝐿1(R2) ,

la fonction 𝜕𝑗𝑢 est continue en tant que transformée (inverse) d’une fonction 𝐿1.

Exercice III. On considère dans 𝒟′(R) l’équation

(𝐸) 2𝑥𝑇 ′ − 𝑇 = 0 .

III.1) Déterminer toutes les solutions de (𝐸) dont le support est contenu dans le
singleton {0}.

D’après le cours, une distribution dont le support est contenu dans {0} s’écrit
comme combinaison linéaire finie de dérivées de masses de Dirac, soit

𝑇 =
𝑛∑︁

𝑗=0
𝑐𝑗 𝛿

(𝑗)
0 .

On calccule à part

⟨𝑥 𝛿(𝑗+1)
0 , 𝜙⟩ = (−1)(𝑗+1) ⟨𝛿0, (𝑥𝜙)(𝑗+1)⟩ = (−1)(𝑗+1) (𝑗+1) 𝜙(𝑗)(0) = −(𝑗+1) ⟨𝛿(𝑗)

0 , 𝜙⟩.

Par conséquent

2𝑥𝑇 ′ − 𝑇 = −
𝑛∑︁

𝑗=0
(𝑗 + 2) 𝑐𝑗 𝛿

(𝑗)
0 = 0 ,

ce qui est possible seulement si 𝑐𝑗 = 0 pour tout 𝑗. Il n’y a donc pas d’autres
solutions que 𝑇 = 0.
III.2) Soit 𝑇 ∈ 𝒟′(R) une solution de (𝐸). Déterminer (on demande une justification)
les restrictions 𝑇+ de 𝑇 à 𝒟′(R*

+). Faire de même (sans justification) pour les
restrictions 𝑇− de 𝑇 à 𝒟′(R*

−).



Sur R*
+, on peut diviser par la fonction 𝑥−1/2 qui est 𝐶∞. On doit avoir(︂

𝑇+√
𝑥

)︂′
= 1

2𝑥3/2 (2𝑥𝑇 ′
+ − 𝑇+) = 0 .

Après intégration, cela donne

∃𝐶+ ∈ R , 𝑇+ = 𝐶+
√
𝑥 .

Sur R*
−, le même raisonnement conduit à

∃𝐶− ∈ R , 𝑇− = 𝐶−

√︁
|𝑥| .

III.3) Déduire de ce qui précède la forme générale des solutions de (𝐸).

Les distributions 𝑇± se prolongent à R∓ suivant 𝑇± = 𝐶± 𝐻(±𝑥)
√︁

|𝑥| où 𝐻 est
la fonction d’Heaviside. Par construction, la distribution 𝑇 − 𝑇+ − 𝑇− vérifie (𝐸)
et a son support dans {0}. Elle vaut donc 0 de sorte que

𝑇 = 𝐶− 𝐻(−𝑥)
√︁

|𝑥| + 𝐶+ 𝐻(𝑥)
√︁

|𝑥| .


